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We investigate the conditions for the solvability of a differential game, based
on a program construction analogous to [1, 2], We quote the conditions for
the existence of the equilibrium situation in pure strategies, The paper abuts
the investigations in [1— 8],

1, Consider the conflict-controlled system
dr/dt = .f(to z, u, U), z (tO) =Ty
zeR", uePC R, vesQCR®

Here f (-) is a function continuous in all arguments and continuously differentiable in
x , satisfying the condition for uniform continuability of solutions formulated in [3, 7, 8],
P and Q are the first and second player's compact sets of admissible controls,

A closed set © is delineated on the interval [¢,, ¥,] . We assume that the function
o (¥, =, m) is given on the set {(¥, z, m) : (8, m) & M, =z & R"}, where M is
a compact subset of ® X R™, and o (-) is continuous in all arguments and continu-
ously differentiable in x in the region o, << ® << ©°. Without loss of generality we
assume that the sections

Mg ={m:(9, me M, me R™}
are not empty for all ¢ & © and maxy ¢ = G,

We assume that the strategies U and V, the counterstrategy U/, , and the motions
generated by them are defined analogously to [8] by passing to a limit from the corre-
sponding Euler polygonal lines,

Problem 1, Construct a strategy U° or a counterstrategy {/,° which on any mo-
tion Zy. [¢] and, respectively, ;o [¢] guarantees the fulfillment of the inequality

mine miny, o (¥, zy. [8], m) e (1.1
ming miny, © (9, Tye [0, m) e (1.2)

where e is a preassigned number,
Problem 2, Construct the pair of strategies (U°, V°) for which the inequality

supq ’CU",V[t] } mine minMam(ﬁ, Zye, V[ﬁ], m) <
ming minyy (%, 2°[4], m) <
inf; xy yolt] } minemin (%, zy ye[8], m)

is fulfilled on every motion z° [#] = =z, v [Z] whatever be the strategies U, V,
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Problem 3, Construct the strategy V° guaranteeing the inequality

mine miny, © (9, zye [8], m) > e
on any motion zye [¢] ; (€ is a given number),

2, Let us consider a modification of the program construction in {7, 8], Let
{H (m (-)), [¢,, 9]} be the class of admissible program controls 1 (+), {K (m (),
[t,, 9]} be the class of the first player’s program controls p () , {E (m (-)), [¢,, 01}
be the class of the second player's program controls v (-), identified, respectively, with
the collections of all regular Borel measures on the products [¢,, 9] X P X Q, [t,,
9] X P and [¢,, 8] X Q, having Lebesgue projection on [z,, §] [7, 8. Let O, 8
be the g-algebra of Borel subsets on [#,, 9]. Then for every measure M (:) &
{H (m (-)), [¢,, 0]} there exists a function m, (-), unique to within values on a set of
Lebesgue measure zero, named below the instantaneous program control, whose values
for each ¢ & [2,, O] are probabilities on P X Q; moreover, for every Borel subset
K C P X Q the function M, (K) Op,, ¢ is measurable and

n{¢uv):tel,wek))= Sm(K)m(dt)
r

for any Borel subsets I' C [Z4, 9] and K CC P X . Analogously we define the first
and second players' instantaneous program controls u, (-) and v, (-) , corresponding
to the measures W (+) E{K (m (-)), [¢,, 91} and v (-) = {E (m (-)), [t4, B8]} ,
respectively,

For an arbitrary oy, g;-measurable function u (-) we denote by §, ) the instan-
taneous program control p, () concentrated at the point u, = u (f) for each . The
notation §,(; has an analogous meaning, Let

{(K* (m (), [tg, 01}, {E* (m(-)), [y, 1}

be subclasses of {K (m (-)), [t,, ©l}and {E (m (-)), [t4, 9]}, consisting, respec-
tively, of all such controls u* (-) and v* (.) that the instantaneous controls p,* ()
and v* (-) corresponding to them are 8, and §,. , , respectively, where u* (¢) &
P, v* (1) & Q are 0y, g-measurable vector-valued functions, By the weak conver-
gence of the program controls M (-), 1 (+) and v (-) we mean their convergence in
the *-weak topology of the spaces adjoint to C ([#,, 9] X P X Q), C ([ty, 9] X
P) and C ([t,, 9] X Q) ,respectively, The following lemma can be proved by using
the results in 7],

Lemma 2,1, Thesets {K* (m(-)), [t,, 91} and {E* (m (), (£, O}
are weakly dense in {K (m (-)), [t., 9]} and {E (m (-), [t,, 0]} ,respectively,

With an arbitrary position (fy, Z), t, € [f,, ¥y} we associate the quantity

&o(l,, Z,) = Max( Bim(y,[t,, 8,1y MiDx(., 1,, x,, ey minet. miny, (%, 2(9), m) = (2 1)
MAXY B(m(e), [t, 81 W0MX(+ 1 2,5 Z,,%(+)))

where X (-, #,, z,, v (+)) is the sheaf of all program attainments [3, 7, 8] generated
by the program {II (v (-)), [Z,, ¥,1} [7.81, O, =8 ) [z, ¥,). We emphasize
that the corresponding maxima and minima in (2, 1) are actually achieved, which follows
from the weak compactness in itself of the programs of class {E (m (-)), [y, ¥},
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as well as from the results in [7], Allowing for Lemma 2,1, we can show that
Eo(te, Z,) = SUP| v 3 IDf( ey minet. minp (¥, (&, ¢,, z,, u(-), v(-)), m)

where {© (+)} and {v(-)} are collections of all Gy, g-measurable functions, @ (Z,
byy Ty 0 (+), v (+)) is the solution of the differential equation

deldt = F (¢, @, u(t), v(8), Z(Iy) =24

We note that in the expression for &, (-) the sets {u (-)} and {v (-)} can also be
assumed to be the sets of all piecewise~-constant vector-valued functions with values in
P and @ ,respectively, We can define the quantity pp (X (-, ty, 2y, v (+))) occur-
ring in (2,1) also in terms of the attainability region [1] G (4§, Ly Tyo v () for the
program {II (v (-)), [¢,, $,]} inthe following way:

om(X(-, 1, 7, ¥(+))= mine, minges, 1, =,, v miny,o(®, z, m)

By o (ty, Z,) we denote the set of all optimal program controls of the second play~
er, which yield the maximum in (2.1),and by X° (-, #,, T4, v (+)) and {IL (v (+)),
[24, Ool] £, Z4}, We denote the set of all program motions optimal in the sheaf
X (-, t4, Tyy V (-)) [2, 3, 7, 8] and the set of optimal controls from the program
{IL (v (), [t,, Opl} respectively: foreach z°(-) & X° (-, 2y, Ty, V (+))

om(X (-, 2, 2,,v(-)) = minet. miny,o(4, 2°(9), m)
For each control M () & {H (m (-)), [y, U,1}.We introduce the set © (f,, Ty
M (-)) of all instants §° which yield

mine, minm,e(, (8, 7,, z,, 1(-)), m)

Here @ (-, £y, T4, M (-)) is the program motion from position (4, Zy), generated
by control M (-). In addition, let

B(t,, z,,¥(+)) = U e, z,, ()

{ITOC)), [ty 8611ty Xado
G(ta’ x.) = U ®(t" x.,'V( '))
ote, %)
M° (T] ('), 'ﬁ', t*’ .’L‘*) = {m° :m’° = M,Q, Il’liIlMaﬁ) (l[),
P (ﬂ'v t*? Ty, M ())1 m) = 0 (ﬁr P, (ﬁ1 t*., Ty M ()), mo)}
Then for every position (@, < &y ({4, 4) << ©°) and control v, (-) € 3 (4, Ty)
we denote by S (2, Z,, v, (+)) the set of all vectors §, for which

517 = [ 0(0%, 00, £,y 1oy 720)] SO, Loy o), ()
where S (&, ¢, @ (+), Mo (+)) is the fundamental solution matrix [3, 7] for the varia-
tional equation corresponding to the control 7, () and to the program motion
Po () = @ ('7 Lgy Ty, Mo ())
Mo (+) € {IL (vo (), [ty, Bl | 2, Ty }o, 9° = O (4, Ty, Mo (+))
my & M° (Mg (-), 9°, ty, 7y)

We also introduce the set
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So(t‘, x:) = E(LIJ ‘“)Svo(to’ xt’ V( ' ))

The control optimal in program necessarily satisfies the following condition which
expresses Pontriagin's maximum principle [6] in the given program problem,

Theorem 2,1, Let Oy (X (-, 2y, 24, v (+)) € (0, ©°). Then for every
control Mg (+) & {IL (v (+)), [y, Bl |y, x4}o, for the instant §° = € (¢, z,,
Mo (+)) and for the point m, & M° (n, (-), 9°, t,, z4) the equality

SS éso’(t)f(t, @o(t), u, V)IMy(dt x du x dv)= Sé minp[sy'(1)f(¢, Polt), u, v)Iv(dt x dv)
AP A

is fulfilled on every set A & oy, o), Here
50(0) = [ 000, @8, ma) ] 'S(O° £ o) o)
@0 (1) = 0 (£, Ly, T4, Mo ()

We say that a control v, (+) €& 2 (24, Z,) is regular if it satisfies the following
conditions s

1) The set @ (£, Ty, V,(-)) consists of the single point §° = T° (£, Ty,
vo ().

2) Every control 1°° (+) & {II (v (+)), [#x, Ool] 4, Z4}o coincides on Borel
subsets of the product [¢,, 3°] X P X () with some program control 1, ()=
{IX(vy (), (24, 0°1}, where {IT (v, (-)), (£, 8°]} is the program of the segment [z,
9°], corresponding to the control v, (-) [71.

3) The set M° (n, (), 0°, ¢, x,) consists of the single point m.

Theorem 2,2, Llet g, (t,, z,) & (v, °) and letthe control v, (-) &
2 (ty, x4) be regular, Then every control M°° (-) & {II (v, (+)), [y, Fol | ts
x*}o, solving (2, 1) necessarily satisfies the following maximin condition:

§ IS §So'(t)]‘(t, P7°(t), u, vM*(dt x du x dv) =

é maxq minp[so'(£)f(¢, 9°°(t), u, v)m(dt)
Here
¢°° () = ¢ (& ty, T4 M7 ()
$'(8) = [ 7500, (), m)| SO, £, §°°(-), 1°°(-))
m* & M® (% (+), 0% by, 24), V7 =B (ty, 24y Vo (+))
(A is any Borel subset of the interval [¢,, 9°]).
The proof is carried out by a scheme analogous to the one in [7].

Using the properties of program motions we can show that the function gg (¢, x) is
right-continuous at each position (2, Zs)

te © [ty Bg) O (1, 24) (2.2)

while the sets O (£, Ty, V() (v (+) & {E (m (), [ty, Fol}) and © (¢4, ) are
closed, In addition, the sets X (¢, x) are weakly upper-semicontinuous by inclusion trom
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the right at each position (£,, Z,) satisfying (2.2).

3, We implemeat the following auxiliary constructions, Let (£, z) and (t,, T4)
be two positions (¢ > #,) and g (-) be the probability over Borel subsets (2,
v®(+)&= 2 (¢, ) and v;° (+) obtained by splicing with probability & () by exten-
ding the constant control § (+) over the half-interval [Z, ) of the instantaneous
control v,°(-) . In the program {II (v:° (+)), [y, ¥,]} we select any control

Me°(-) optimal for the position (ts, Ty) , whileinthe set © (fy, Ty, Mg N
we select any point §,°, Next, from the set M° (ng° (+), 0, ¢, z,) we choose any
element mg’. By Op(ty, ) we denote the right §-semineignborhood of position

ey o)t 0t — 1, <<H, ||z — 2] <O,

Lemma 3,1, Forany position (fy, Z,), t, & [¢,, ®,) and any number @ > 0
there exists § >> 0 such that for an arbitrary choice of position (£, z) &= Os (2, T,)
the controls v° (-)&= 2 (¢, 2), E(+) and m° (1) & {T1 (ve® (-)), [ts, Gol | tay 24 }o

Oty Ty 1 () T € {L,, )
The proof relies on the weak upper-semicontinuity by inclusion of the sets X (£, x).
By virtue of the closedness of set © (¢, r,) and of Lemma 3,1, for every position

(B4 Ta), by € [25, Oy) \\ O (L4, 7,) there exists § >> 0 such that for an arbitrary
choice of ¥° (), & (+), mz° (+) from the appropriate sets

Otses %5 M2°(+)) C O

for every position from Oy (4, T4) . Below we assume that the adjacent position (£, z)
is selected from this condition, The control from {II (v° (-)), [, ¥,]} coincidingwith
1n° (<) on {¢, 0,0 X P X Q will be denoted by M° (+) . Then we can show that
for every position (fy, Z,), tx € [£,, ¥4) \\ O (£4, *4), we can find, for anya > 0,
a § > 0 such that for every position (¢, 2) & Os (ty, Ty)

| (82, @e°(8:°), me%) — &2, 2,) | <L @

Pe’(¥:) = 9B, £, 2, M)
for an arbitrary choice of ¥°(+); §(+), n:°(+), 9;° and m;° from the appropriate sets,
With due regard to this, for every position (Z,, z,) satisfying the condition

gy Ly, Ty) E (0y, 0°), by & 15, §g) \ O (84, 7y) 3.1)

and for any position (¢, z) from a sufficiently small right §-semineighborhood of (%,
Zy) ,foreach v°(-) & Z (¢, 2) and & (.) we define the set S, (¢, z | Lyr Lo
v (-), & (-)) consisting of all vectors s such that

4 9 o o < O" o ~ o o
§= [&"’(ﬁi » @2 (92°%), mg )j S0, £, @), me%(+)) (3.2)

where

where .
Mz () == { H(V’?.o('))’ [t.’ '6’0] I t.’ T, }0
ﬂio == ®(t4«’ x#’ nio( : ))’ mEO &= MO(T]EO( * )1 ﬁ'io’ tt’ xo)
Lemma 3,2, Forevery position (Z,, Z,) satisfying (3,1) and for any number
o > 0 we can find § >> 0 such that for each position (¢, ) = O (ts, x,) there
exists, for any control v° (.) &= 2 (¢, 2) ,a control v, (+) & Z (¢4, %) for which
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M Sall 2 [ty 24, ¥ (4), §()) = (3.3)
(EC)g
Sw(l, Tty Tuy ¥V (+)) T84 (Fyr Ty Vo (+))
where 5% is the &-neighborhood of set S in the Euclidean metric ||- ||, while{§ (+)}¢

is the collection of all probability measures on ().

Below we assume the fulfillment of the following condition,

Condition A, Forevery position (#,, %) satisfying (3,1) and for any control
Vo(-) € Z (4, Z4) there exists a vector v, & Q for which the equality

minp $o'f (Pgs T Uy Vo) = MaXq minp so'f (4, Ty, U, V)

is fulfilled on every vector Sy & S (fy, Ty, Vo (+)) .
Theorem 3,1, For every position (f,, z,) satisfying (3.1), with respect to any
number y >> 0 we can find & > 0 such that for any position (¢, z) & Os (f4, Zx)

0(t, ) — £ (Lys Ty) < MKy, 1 [ (€ — Z4) — (3.4)
maxg minp s'f (fy, Ty, U, V) (E — L) -+ ymax (f — iy, |2 — 24])

Proof, Let (t,, z4) satisfy the lemma’s conditions and & be any positive number,
We assume that the adjacent position (£, x) is chosen from such a neighborhood of (#,
Ty) that (3, 3) is fulfilled (such a neighborhood exists by virtue of Lemma 3, 2), On the
other hand -
€o (t, x) — & (t*, .T*) < (l)('ﬁ'go, (Pao (ﬁ'ao), TTIEO) — (0(’8‘&0, (PEO (ﬂ'ao), m;‘°) (3. 5)
forany v () E 3 (4, 2), E(+), 17 () & {IL (v (), [ty Bl 120 Zaor
Be® € 0 (ty, Ty M (+)) 20dM"E M° (1° (), ¥e°, Iy, 2,). Then, having chosen
any control v° (.) & X (¢, z), we choose a controlvo(.)ez(t*,x*)such that (3,3) is
fulfilled, after which, with due regard to Condition A we select a probability E (.) such

that the equality . . '
\ minp [s0'/ (s T4 ©, 1)1 §(dV) = maxq minp so'f (s, T4 Us V)

Q
is fulfilled on any vector Sy & S (£4, T4, v,(+)). We use the indicated v°(.) and
E (-) in estimate (8, 5), Subsequent derivation is carried out allowing for this estimate
and for the differentiability of the function o (-) with respect to z as in [8].

4, Let W, be the set of all positions (¢, z), ¢ €= [£,, 9], for which &, (¢, 7) < &.
This set is closed for every & , We say that a probability , (-) on P X ¢ is consist-
ent with the probability £ (-) on Q if u (P X B) = & (B) for each Borel subset
B < Q . (By a probability we mean a normed measure on a g-algebra of Borel subsets
of the corresponding space ),

Condition B, For every position (fy, ) satisfying (3,1) and for any probabi-
lity £ (-) on Q there exists a probability u (-) on P X Q, consistent with £ (-),

such that
Sy’ S S [(tgs Zgy U, V) P (du X dv) < maxq minpg sy'f (b, Ty, U, V)
PQ
uniformly with respect to So & So (Z4, T4) .
Allowing for Theorem 3,1, the tollowing theorem is proved,
Theorem 4,1, Let Conditions A, B be fulfilled, Then the sets We are u-stable
forevery £ & [w,, «°): for every position (4, 4) & W, for the probability & (-)
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on Q and for an instant t* & [#4, ¥l , in the family of all possible program motions
on [t,, £*], generated by controls from the program {II (v® (-)), [ty, #*1} ,wecan
find either a motion ¢° (¢) for which

minam[t” i*] minMa (D(’&, (PO (ﬂ‘), m) < £

or a motion Qg (£) for which the position (¢, ¢ (£)) & W, forall ¢ & [t,, £*].
Here v(® (.) is a control from class {E (m (-)), lty, t*]} [8]such that the instan-
taneous control V(% (-) corresponding to it is the probability & (-) for almost all

t = lt,, t*.

To obtain the necessary conditions for the u-~stability of sets W, (e & [0, ©°))
we implement the following auxiliary constructions, Once again let (4, z,) and (¢,
z) be such that fy & [y, O,) and £ >> fg. Further,let vy (-) & Z (£, Z4), let
Vo (+) = {E (m (), [, B,]} and let it coincide with v, () on [¢, &l X Q,and

let
o (1) = {IL(F, (1), L8, 8] [ 2, 2} _
P00z (), me M (T (+), 9°%¢ 2)
Mo (*) & {T1(vo 1))y [ty 81}
~ where the values of measures M, (-) and T (+) coincide on the Borel subsets of [7,
Byl X P X Q. Then
gg (1, 2) — &g (ty, Z4) > © (v°, [ (—60)’ My) — © (601 Po (), My)  (41)
Go () =0 (-, ta To, M () Go() =0( £ 2,m5(+))
We can show that for every position (Zy, z,), tx & £y, By) \ O ({4, z4), for any
@ > 0 we can find § >> 0 such that for any neighboring position (¢, z) & O (24, z4)
| @ (Tﬁoa Po (6°), i) — &g (e, Ty) | <<
for an arbitrary choice of v (+), Mo (+), 9° and o from the appropriate sets, There-
fore, for every position (i, x,) satisfying (3,1) and for any adjacent position (£, x)

from a sufficiently small right §-semineighborhood of (¢,, z,) we can determine, for
each control vy () & Z(f, ). the set S* (¢, & | ty, Ty, Vo (+)) of all vectors s

’ "0 Fo = ,mey N T o o oy
s =[50 @ @ @), mo)| S @, £, % (), M ()
Lemma 4,1, Forany position (fy, Zy) satisfying (3,1) and any control
Vo (+) & Z (44, ) ,forevery o > 0 we can find § > 0 such that
S* (¢, x| Lgs Ty Vo ()) C Se* (t*, Tye» Vo )]
for each position (¢, z) & O (2, z4) «
Theorem 4,2, Letthe set W, be y-stable for every & & [w,, ©°) , Then

for each position (¢, z,) satisfying (3.1) and for any probability & (.) on @ there
exists a probability p (-) on P X @, consistent with £ (-), such that

mingg,, x,. wi-) [SD'S S flte, 24, U, V) X (4.2)
PQ

1 (du X dv) — maxg minp s'7 (L, Ty Us u)] <0
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for each control v, (-) & X (fy, Z4)»
Plan of the proof, For every position satisfying the lemma’s conditions there
exists an instant T >z, such that for every preselected probability &(.) the inequality

min@ﬂ[t*,t*] min}\ls ® (ﬁv P, ) (ﬂ‘y Ly, Tyy M ())y m) > gy (t*, T4)

is fulfilled for any program motion @ (¢, f4, T& N (*)) for which Nt (P X B) = § (B)
for any Borel subsets of ¢, By the definition of u-stability we conclude that for each
probability & () there must exist a control 1* (-), consistent with § (-), such that

8o (6 @ (& Ty Tuo M* () < &g (e y) for all t & [t,, T*]

Assume that the theorem is incorrect, Then, with due regard to what we have said
above, at the position (2, z,) where (4, 2) is violated for some £ (.) and v, (.), for some
sequence {t,} converging to # from the right (¥, > £;), we can use estimate (4,1) just
under that control Vo (-) by which condition (4, 2) is violated for a preselected § (),
But then, allowing for the differentiability of function ® (-) with respect to = and for
Lemma 4,1, for sufficiently large » we obtain

8(} (Tn! xn) > SO (t*y SX*), Ty = ¢ (Tn, t*y Ly ﬂ* ('))

Corollary, Suppose that under each control Vv, (+) & X (2, Z4) the set Sy ({4,
Ty, Vo (+)) consists of the single vector S, = 8, (Z4, Ty, Vv, (-)) for every position
(L4» Zy) satisfying (3,1), The Condition B is necessary and sufficient for the sets W,
to be u-stable for any & = [w,, «°).

5, Let U® be the strategy extremal [2] to set W, and let U,° be the counterstra-
tegy [8] extremal to that same set,

Theorem 5.1, Let & = g, (fy, Zo) & [®,, ©°) and let Conditions A, B be
fulfilled, Then, under the condition that a saddle point with respect to (u, v) exists in
the small game [2], the strategy UU° — [J¢ extremal to set W, solves Problem 1 by
guaranteeing the fulfillment of (1,1),

Theorem 5.2, Let g = g, (fo, Zp) & [0, ©°) and let Conditions A, B be
fulfilled, Then the counterstrategy U,° = U,® extremal to set W, solves Problem 1
by guaranteeing here the fulfillment of (1, 2),

For the control v, (+) & 2 (¢4, x,) we form the set W (v, (+)) of all positions

(t’ H)} wch(t: tm xo:n('))» YI()E {H (VO(')): [t()s ﬁ'o]}

Let V' be the second player's strategy [8], extremal [2] to set W (v, (-)).
Theorem 5,3, Strategy V¢ ensures the solution of Problem 3 for any & < € (£
Zo)-
Plan of the proof, Let g, [¢] be an Euler polygonal line corresponding to the
strategy V¢ and let 7,0 — 4, be a node of the partitioning A®, and

Te =T, () [t e Wh {(vo (-))
Wy, (Vo (4)) = {w: (ty, Wy & W (vo (-)) }

In addition, let v* = v[£,], «{t] be the control realizing the given Euler polygonal line,
s be the vector w® — x4, where yp° is a point of set W, . (vg {(*)) closest to x, in the
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Euclidean metric and
ming s'f (¢, z4, u, V¥) = maxg ming S (Eyy Tay U, V)

Then, in the program {IT (v, (-)), [t®, 1)1} we can find a control n* (-) such that

t t

s’ S S S f (Eas Ty 4, ) N* (T X du X dv) = S S minp [§'f {ta Ta U, 2)] Vo (@T X dv)

LPQ & Q

for every t & [, (%), . Hence, with due regard to the inequalities
¢
s’S f (ter o u [T], 2% m (dT) >S max g ming [ (£, Tg u, 2)] m (@d7) >

t‘

~

P T

S minp [s'f (ty, T4 1, 2)] Vo (dT X d2)

Q

we derive a local estimate analogous to the one used in [4], From this estimate, in ana-
logy with [4], we derive the barrier properties of strategy Ve,

Theorem 5,4, lLet & = g, (¢, Z,) & [®,, ©°) and let Conditions A, B and the
small game saddle point condition be fulfilled, Then the pair of strategies (U° = U®
V° = V*) solves Problem 2, Here &€ = g, (tos o) is the value of the game in pure
strategies,

‘Problems 1—3 admit of an intuitive representation when M is a closed subset of
® X R™ and o (¥, z, m) = ||z — m ||. The possible noncompactness of M is un-
essential here since the problem reduces to an encounter-evasion problem with some
compact subset of M.

The author thanks N, N, Krasovskii for his constant attention to the work,

REFERENCES

1, Krasovskii, N, N, , Game Problems on the Contact of Motions, Moscow, "Nauka",
1970,

2., Krasovskii, N, N, , A differential game of encounter-evasion, I, 11, Izv, Akad,
Nauk SSSR, Tekhn,Kibernetika, N!N¢2 3, 1973,

3. Batukhtin, V,D, and Krasovskii, N, N,, Problem of program control by
maximin, Izv, Akad, Nauk SSSR, Tekhn, Kibernetika, N°6, 1972,

4. Krasovskii, N, N, and Subbotin, A, I,, An alternative for the game prob-
lem of convergence, PMM Vol, 34, N6, 1970,

5. Pshenichnyi, B, N, , Structure of differential games, In: Theory of Optimal
Solutions, N¢1, Kiev, 1968,

6, Pontriagin, L,S,, Boltianskii,V,G,,Gamkrelidze, R, V, and Mish-
chenko, E, F,, The Mathematical Theory of Optimal Processes, (English
translation), Pergamon Press, Book N¢10176, 1964,

7, Chentsov, A, G,, On a game problem of program control, Dokl, Akad, Nauk
SSSR, Vol,213, N2, 1973,

8. Chentsov, A, G,, On encounter-evasion game problems, PMM Vol, 38, N2,
1974,

Translated by N, H, C,



