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We investigate the conditions for the solvability of a differential game, based 

on a program construction analogous to [ 1, 21. We quote the conditions for 
the existence of the equilibrium situation in pure strategies. The paper abuts 

the investigations in [ 1 - 81. 

1. Consider the conflict-controlled system 

dzldt = f (t, z, U, v), 2 (to) = 20 

x E R*, u E P c BP, UEQCP 

Here f (m) is a function contmuous in all arguments and continuously differentiable in 

x , satisfying the condition for uniform continuability of solutions formulated in p, 7, 81, 
P and Q are the first and second player’s compact sets of admissible controls. 

A closed set 8 is delineated on the interval It,, 6,] . We assume that the function 
o (9, z, m) is given on the set ((6, x, m) : (6, m) E M, x E R”} , where M is 
a compact subset of @ X R”, and o ( -) is continuous in all arguments and continu- 
ously differentiable in z in the region o. < o < 0’. Without loss of generality we 
assume that the sections 

Ma = {m : (6, m) E M, m E R”‘} 

are not empty for all 6 E 0 and maxs 6 = 6,. 

We assume that the strategies u and v, the counterstrategy U, , and the motions 

generated by them are defined analogously to [8] by passing to a limit from the corre- 
sponding Euler polygonal lines. 

Problem 1. Construct a strategy U” or a counterstrategy U,” which on any mo- 
tion zuo [t] and, respectively, x UoO [t] guarantees the fulfillment of the inequality 

mine minM, 0 (*, Xuo L-81, m) < E (1.1) 

mine rnin&Ia 0 (6, zUo= [++I, m) < E (L2) 

where e is a preassigned number. 
Problem 2. Construct the pair of strategies (U”, V“) for which the inequality 

snp~rUo,vft~ 1 mineminw,o(~,ZLIO,~[~)I,m)\< 

mineminM80(~,x"[6],m),( 

inf I XU,Vo[t~) mineminlu,w(~,zII,~~(61, m) 

is fulfilled on every motion x0 [t] = 5 “0, vo [tl whatever be the strategies U, P. 
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Problem 3. Construct the strategy v” guaranteeing the inequality 

mine rninM* o(6, zyo ISI, m) > a 

on any motion zvo [t] ; (8 is a given number). 

2, Let us consider a modification of the program construction in ~7, 81. Let 
{H (m (a)), It,, Sl} be the class of admissible program controls q (.), {K (m (.)), 

It*, fl]} be the class of the first player’s program controls p (.) , {E (m (.)), [t,, $j]} 
be the class of the second player’s program controls Y (.), identified, respectively, with 
the collections of all regular Bore1 measures on the products [t,, S] X p X Q, [t,, 
S] X P and [t,, Sl X Q, having Lebesgue projection on [t,, +] [7, 81. Let ~[~.,sl 
be the o-algebra of Bore1 subsets on [t,, fi]. Then for every measure q ( *) E 

{H (m (s)), b,c, Sl) h t ere exists a function qt (m), unique to within values on a set of 
Lebesgue measure zero, named below the instantaneous program control, whose values 
for each t E It,, Sl are probabilities on P X Q; moreover, for every Bore1 subset 

K c P X Q the function tll (K) art., s, is measurable and 

rl( 1 (t, u, v) : t E r, (UT 4 E K 3 ) = 5 rl,(Q+w 

for any Bore1 subsets r C it,, Sl and K C P X 6. Analogously we define the first 

and second players’ instantaneous program controls pl (.) and vt (.) , corresponding 

to the measures CL (*)E{K (n (s)), [t,,61) and Y (.) E {E (m (a)), It,, el) , 
respectively. 

For an arbitrary act,, sj-measurable function n (.) we denote by 6, (t) the instan- 
taneous program control pt (e) concentrated at the point ut = u (t) for each t . The 

notation 6, (1I has an analogous meaning. Let 

{K* (m (*)), It*, 011, {E” (m (.))I [t*, $1) 

be subclasses of {K (m (.)), [t,, 01) and {E (m (s)), [t,, +I}, consisting, respec- 
tively, of all such controls p* ( .) and v* (.) that the instantaneous controls pt* (s) 

and vt* (s) corresponding to them are 6,. (t) and 6,+ (t) , respectively, where U* (t) E 

P, II* (t) E Q are c[t.,8]- measurable vector-valued functions. By the weak conver- 
gence of the program controls q (s), Jo (s) and v (.) we mean their convergence in 

the *-weak topology of the spaces adjoint to C ([t,, 61 x P x Q), C ([t,, Sl X 

P) and C (It,, Sl x Q) , respectively. The following lemma can be proved by using 

the results in p]. 

Lemma 2.1. The sets {K* (m (s)), It,, Sl}. and {E* (m (s)), It,, 81) 
are weakly dense in {K (m (e)), It,, 61) and {E (m (.), [t,, +I} , respectively. 

With an arbitrary position (t*, z*), t, E [to, Sal we associate the quantity 

a&.~ 2.) = maxt ~(m(.)),[t,, ~,II minxc., t,, %., +)) mine,. minAfCo(*, s(6), m) = (2.11 

max( E(m(.)), [t,, %I ,PM(~( *, t., 5*, Y( -)>) 

where X (0, t,, r*, y ( .)) is the sheaf of all program attainments [3, 7, 81 generated 

by the program {II (Y (a)), [t,, Sal} I?, 81, 01, = 8 n [t,, *,,I. We emphasize 
that the corresponding maxima and minima in (2.1) are actually achieved, which follows 

from the weak compactness in itself of the programs of class {E (m (a)), It,, Sal}, 
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as well as from the results in [7]. Allowing for Lemma 2.1, we can show that 

E0(f*, x:,) = sup{ wt.) t inf, u(.) 1 mine,. miwp(fi, (~(6, t., z., u( .), V( -)), m> 

where (u (s)} and {V (m)} are collections of all (Tlt,,81-measurable functions, cp (t, 

t*, x*9 24 (a), u (.)) is the solution of the differential equation 

ax/at = f (t, 2, u (0, v (t)), 5 (t*) = %+c 

We note that in the expression for e. (s) the sets {U (m)} and {U (s)} can also be 

assumed to be the sets of all piecewise-constant vector-valued functions with values in 

P and Q , respectively. We can define the quantity pat (X ( - , t,, x*, Y ( .))) occur- 
ring in (2.1) also in terms of the attainability region [l] G (6, t,, x*, v (.)) forthe 

program {n (Y (s)), [t*, Sol} inthefollowing way: 

o,(x(. , t., r,, v( -))= minCQt minG(8. t,, &, +)) mh+f,&ST xy m, 

By CJ (t*, x*) we denote the set of all optimal program controls of the second play- 

er, which yield the maximum in (2. l), and by X” (- , t,, x*, v ( -)) and {n (V (-)), 

[t,, +,]I t,, x.+}~ we denote the set of all program motions optimal in the sheaf 

X (-7 t,, x*, v (.)) [Z, 3, 7, 81 and the set of optimal controls from the program 

{n (V (.)), [t,, 6,l},respectively: for each cc0 (-) E X” (-, t,, xyc, v (*)) 

Px(~(‘, t., x., v(-))) = mbt, minM,m(*, x0(6), m> 

For each control ‘Y (-) E {H (m (-)), it,, fi.,l}.~e introduce the set 0 (t*, x*, 
q (-)) of all instants 6” which yield 

mine,. minM,o(*, (p(Q, t,, x., rl(. )), m) 

Here cp (-, t,, X*, q ( - )) is the program motion from position (t,, a+), generated 
by control ?j ( -). In addition, let 

qt.7 x*, v( * >) = U w*, 
1 n M.)). If., %I I t,, rth 

x*7 rl( * >) 

@(L 2.1 

M” (q (a), 6, t,, X*) = (n-2’ : n-2” E IUs, minfir,o (6, 

cp (67 t*, x*7 rl (*))7 m) = 0 (6, cp, (6, t,, x*, r (m)), m”)) 

Then for every position ( o. < ~~ (I 

we denote by so (t,, x*, v. ( . )) 
*, x*) < 0’) and control v. (e) E 2 (t*, XJ 

the set of all vectors so for which 

so’ = [& 4fi”, (P(@“, t.7 x.9 rlo( - N, mo,] SW, t., cpo( * >, rlo( * >> 

where S (6, t, ‘p. (*), %I (->> is the fundamental solution matrix ~3, 71 for the varia- 
tional equation corresponding to the control q. ( .) and to the program motion 

cpo (*) = cp (-7 t,, x*, 70 (.)) 

rlo (.) E PJ (vo (.))Y It*, 601 I t,, r*Al, 6” E 0 (t*, x*, qo (-)) 

no E M” (90 (.)I 6”, t,, x*) 

We also introduce the set 
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SO@*7 x*) = $ x foQ.3 X.7 q * )) 
*, * 

The control optimal in program necessarily satisfies the following condition which 

expresses Pontriagin’s maximum principle [6] in the given program problem. 

Theorem 2. 1. Let p*[(X (-: t,, z*, Y (-))) E (oo, 0"). Then for every 

control TO (*) E {II (v (.)), [t*, 6,l 1 t,, z*}~, for the instant 6” E 61 (tye, x*, 
‘q. (*>> and for the point m, E M” (q. (.), 6”, t,, z*) the equality 

aas ;; QsO’(w, cpo(O, u, u)qo(dt x du x du)= ss minp[s0’(t)f(t, rpo(t), u, U)lY(dt x du) 
AQ 

is fulfilled on every set A E oll*,OOI , Here 

so’(t) = [; w(W, (po(6”), mo)]‘s(so, t, cpo(*)3 rlo(*)) 

‘PO (0 = cp (t, t,, x*9 rlo (*)) 

We say that a control v. ( .) E Z (t,, z*) is regular if it satisfies the following 
conditions : 

1) The set 0 (t*, x*, v. (-)) consists of the single point 6” = 6” (t,, x*, 

yo (*)). 
2) Every control tloO (s) E {n (v. (s)), [t,, fiol 1 t,, x*}~ coincides on Bore1 

subsets of the product [t,, So] x P x Q with some program control q. (*) E 

{n (y. (e)), It*, @‘I), where {II (v. (a)), [t,, W} is the program of the segment [t*, 

6”], corresponding to the control Y, ( .) [7]. 

3) The set Alo (70 (+), Q”, t,, x*) consists of the single point m,. 

Theorem 2. 2. Let co (t.+, IC*) E (coo, co’) and let the control vg (a) E 

?: (t*, x*) be regular. Then every control qoO (s) E {II (v. (.)), [t*, 6,l 1 t,, 
&}o, solving (2.1) necessarily satisfies the following maximin condition : 

sss * p Q so’(W4 cp”“(O7 u, u)f’(dt x du x du) = , s 
A 
maxQ minP[so’(t>f(t, P(t), u, W-@t) 

Here 

YJ”” (t) = cp (C t,, x*, tloo (*)) 

so’(t) = [& +o, (poo(Vo), mOO)j ~(00, t, cpoo(. ), qoo(. )) 

7s” E M” (qoo (*), 6”, t,, x*), 6” = 6” (t*, x*, VII (*)) 

(A is any Bore1 subset of the interval [t,, So]). 

The proof is carried out by a scheme analogous to the one in [7]. 
Using the properties of program motions we can show that the function a0 (t, x) is 

right-continuous at each position (&, &+> 

t, E [to, so> \ @ (t*7 x*1 (2.2) 

while the sets @ (t,, x*, v (-)) (Y (a) E {E (m (a)), it,, Sol}) and 0 (t*, ST*) are 
closed. In addition, the sets 2 (t, .x) are weakly upper-semicontinuotis by inclusion trom 



On an encounter-evasion differential game 545 

the right at each position (t*, 5*) satisfying (2.2). 

3, We implement the following auxiliary constructions. Let (t, 2) and (t,, z*) 
be two positions (t > t*) and E (.) be the probability over Bore1 subsets 0, 

V” (*) E 2 (t, 3) and VEo (0) obtained by splicing with probability E (0) by exten- 
din,: the constant control E (a) over the half-interval It,, t) of the instantaneous 

control VP,(+) . In the program (II (VP (.)), [t,, ear) we select any control 
rlc” (*) optimal for the position (t,, x.J , while in the set 0 (t+, x*, rjc” (*)) 

we select any point 6,“. Next, from the set fkro (qP (+), fig’, t,, z*) we choose any 

element mc*. By 0s (tr, x*) we denote the right &semineighborhood of position 

it*, 4: 0 \< t - t, < 6, II 5 - s*ll c 6. 
Lemma 3.1. For any position (t*, L*), t, E [to, 6,) and any number a > 0 

there exists 6 > 0 such that for an arbitrary choice of position (t, X) & #a (t,, x*) 

the controls V”(.)EZ (t, x), E(a) and Q*(.)E (n (YE;” (a)), Ita, 601 I &, %jo 

The proof relies on the weak upper-semicontinuity by inclusion of the sets 2 (t, z). 
Bv virtue of the closedness of set 8 (t.+, z*) 

(t*7 

and of Lemma 3.1. for every position 

ZS>~ t* E Ita, 3s) \ 8 (t*, 5*) there exists 6 > 0 such that for an arbitrary 
choice of V’ (s), E (*), qc” (*) from the appropriate sets 

for every position from 0s (f,, &) . Below we assume that the adjacent position (t, $1 

is selected from this Condition, The control from {n (v” ( *)), [t, 6,]) coincidingwith 

qt” (e) on It, 6,,1 X P X Q will be denoted by Tc” (e) . Then we can show that 

for every position (t*, &), t, E [to, so> \ @ (t*, z*), we can find, for any a > 0, 
a 6 > 0 such that for every position (t, z) E OS (t,, q.) 

for an arbitrary choice of V” ( +)i g ( w), q<( .), 1’3~~ and rn< from the appropriate sets. 
With due regard to this, for every position (t*, 5.J satisfying the condition 

80 (4X x*1 (2 (001 a”>, t, E ito7 sot \ @ (t*, z*) (3.1) 

and for any position (t, 5) from a sufficiently small right 6-semineighborhood of (t,, 

a%) ,foreach V”(*)Ez(t,s) and E(.) wedefinetheset S,(E, z J&,X*, 
V” (*), g (e)) consisting of all vectors s such that 

(3.2) 
where 

%“(*E{~(v~o(*)), [~.7%lIW.f0 
f-4” E w,, x*, Q”( ‘))I me0 E MO(rleO( * ), @,“, t.7 5,) 

Lemma 3.2. For every position (t+, cc*) satisfying (3.1) and for any number 
a > 0 we can find 6 > 0 such that for each position (t, X> E O6 (t*, za) there 

exists, for any Control v” ( .) E 2 (t, z) , a control V. ( .) E x (t*, 2*) for which 
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u 
tt(,)lQ 

s*c4 “It*7 x*7 VW, E(a))= (3.3) 

S*(t,J:lt*,5*,Y”(.))CSga(t*,Z*,Yg(.)) 

where s” is the a-neighborhood of set S in the Euclidean metric 11. 1 I, while{E ( B)}~ 

is the collection of all probability measures on Q. 
Below we assume the fulfillment of the following condition. 
Condition A. For every position (t,, z+) satisfying (3.1) and for any control 

“II(.) = z (&cc, So) h t ere exists a vector ua E Q for which the equality 

minp sa’f(t*, 5*, U, 71~) = maxg minp sa’f(&, x*, u, v) 

is fulfilled on every vector s,, &Z 8, ( t,, x*, Y,, ( * )) . 
Theorem 3.1. For every position (t,, x*) satisfying (3. l), with respect to any 

number y > 0 we can find 6 > 0 such that for any position (t, Z) E OS (t*, s*) 

eo (t, x) - eo (t*7 x*) < maxs,(t,, x,) [s’ (‘2: - 5*) - (3.4) 

maxg minp s’/ (t+, x*, 74 4 (t - &)I + 7 max (t - b, /I II: - x* 11) 

Proof. Let (t*, x*) satisfy the lemma’s conditions and a be any positive number. 

We assume that the adjacent position (t, Z) is chosen from such a neighborhood of (t*., 

&) that (3.3) is fulfilled (such a neighborhood exists by virtue of Lemma 3.2). On the 
other hand 

Eg (t, x) - e, (L*, J*) < 0 (fit”, ‘pE” (@CO), m$) - @(fig? (pe (@P), mtO) (3. S) 

for any v” (s) EZ (t, z), E(.), q$ (.) E {rI (Y$ (.)), tt,, Sal I by z*Jo~ 

w E @ (t*, x*1 rla C-j) and rnt” E M” (Q’ ( .), fi$, t,, x.+). Then, having chosen 

any control ~0 ( . ) E 2: (t, x), we choose a controlv,( .)~x(t,,z,)such that (3.3) is 

fulfilled, after which, with due regard to Condition A we select a probability E (.) such 

that the equality 

s minp [so’f(&, x*, U, U)] E (du) = maxQ minp sO’f (t*, &$, UT v) 

is fulfilled on any’vector so E so (t .+, x*, vo( .)) . We use the indicated v” (*) and 

E (.) in estimate (3.5). Subsequent derivation is carried out allowing for this estimate 
and for the differentiability of the function o (e) with respect to 1c as in [8]. 

4, Let w, be the set of all positions (t, x), t E [to, I?,], for which es (t, X) < e. 
This set is closed for every E . We say that a probability j_t ( - ) on P X Q is consist- 

ent with the probability E ( .) on Q if p (P X B) = g (B) for each Bore1 subset 

B c Q . (By a probability we mean a normed measure on a o-algebra of Bore1 subsets 

of the corresponding space). 
Condition B. For every position (t,, x*) satisfying (3.1) and for any probabi- 

lity E (e) on Q there exists a probability p (e) on P X Q, consistent with t (.) , 
such that 

so’ ss f ct*, x*, u, ~)p(duxdu)~<maxQ minp sO’f (t*, x*, u, c) 
PQ 

uniformly with respect to so E so (&, X*) . 
Allowing for Theorem 3.1, the following theorem is proved. 
Theorem 4.1. Let Conditions A, B be fulfilled. Then the sets WE are u-stable 

for every e E [ ao, 0’) : for every position (t+, x,) CZ W,, for the probability g (a) 
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on Q and for an instant t* E It,, 6,l , in the family of all possible program motions 

on it,, t*l, generated by controls from the program {II (v(c) (*f)* it,, t*l} , wecan 
find either a motion cp” (t) for which 

minanfl,, t+] minfira w(6, rp”(6), nz) Q E 

or a motion cpo (6 for which the position (t, (p,, (t)) E IV, for all t E [t,, t*I. 
Here v(E) ( + ) is a control from class {E (m ( . )), [t*, t” I} [83 such that the instan- 

taneous control Y,(c) ( - > corresponding to it is the probability z ( . ) for almost all 
t E [t,, t*l. 

To obtain the necessary conditions for the u-stability of sets w, (E E [ oo, U")> 

we implement the following auxiliary constructions. Once again let (t*, .r*) and (t, 
2) be such that r* E It,,, 6,) and t > t,. Further, let v. (e) E 2 (t+, g*), let 

Ya (.> E {E (m (*I>, It, &J: and let it coincide with ‘vO ( *) on It, S,i X Q, and 
let 

‘iTo (-1 E {Iz ITO (*)L k fi,l I t7 x>o 

IF E 0 (t, 5, ‘ri* (-)), @ii, ET? AIf0 (-;o (*>, @, t, $1 

ro (*I E U-J tyil (*IL It*, *&I 

where the values of measures ‘rjo ( * ) and q0 ( a ) coincide on the Bore1 subsets of fc, 

6,l x P x Q. Then 

80 (6 4 - Eg (t,, 26) > 63 @K go go>, iii@) - 0 (@, 'PO (P-"), f&J (4.1) 

cpo (*I - rp (-7 GlS7 X$7 %I (.))I ?o (-1 = fp (-7 6 2, 70 (*)I 

We can show that for every position (t*, cc*), t, E It,,, 6,) \ 0 (t* , ZJQ, for any 
a > 0 we can find 6 > 0 such that for any neighboring position (t, 2) E OS (t,, z_+) 

I 0 W iijo W), fiio) - co (t*, 4 I < a 

for an arbitrary choice of vs ( .), Ilo ( * ), $ and fi, from the appropriate sets. There- 

fore, for every position (t,, E*) satisfying (3.1) and for any adjacent position (t, x) 
from a sufficiently small right &semineighborhood of (t*, xJ we can determine, for 

each control vo(.) E E(t,, s,),the set S* (t, 1c 1 t,, xye, vo(-)) ofallvectorss 

Lemma 4.1. 

vo (*) E x (t*7 
For any position (t,, 2*) satisfying (3.1) and any control 

G+) , for every a > 0 we can find 6 > 0 such that 

s* (6 J: I t,, x*7 vo (*)I c Soa (t*, x*9 vo (-)) 

for each position (t, x) cz OS (t,, z.J . 
Theorem 4.2. Let the set WE be u-stable for every E E [ oO, 0’) . Then 

for each position (r*, x*) satisfying (3.1) and for any probability E ( . ) on Q there 
exists a probability p (e) on P X Q, consistent with g (.), such that 

mwdf,, x*, vof.f) so’ 1 ss fG*, x*, UT a x 
PQ 
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for each control vO (.) E AX (t*, X& 
P 1 a R of the p r oo f. For every position satisfying the lemma’s conditions there 

exists an instant r* > t, such that for every preselected probability E( .) the inequality 

minQn[t*,7*, minM, 0 (67 cp, 6 (6, t,, x*, q (.)I, m) > E” (t*, 2$) 

is fulfilled for any program motion 9 (t, t,, G+, 11 (-1) for which % (P X H) = 5, (B) 

for any Bore1 subsets of Q , By the definition of Lc-stability we conclude that for each 
probability g (s) there must exist a control ?I* (.), consistent with E (+), such that 

a0 (k cp (& t,, %$ V* (.))I < %I (t*,G) for all t E It*, r*l 

Assume that the theorem is incorrect. Then, with due regard to what we have said 

above, at the position (t*, z*) where (4.2) is violated for some g (.) and vO ( e), for some 
sequence {tn} converging to t, from the right (zn > t,), we can use estimate (4.1) just 

under that control YO (.I by which condition (4.2) is violated for a preselected E (.) . 
But then, allowing for the differentiability of function o ( .) with respect to I and for 
Lemma 4.1, for sufficiently large n we obtain 

so f% %) > 80 (TV %I> 2, -= tp (%, t,, x** q* (*)) 

Corollary. Suppose that under each control v. (s) E Z: (t*, s*) the set S, (tr, 

a+, v,_, ( 6)) consists of the single vector sO = so (t,, xL, v. ( . )) for every position 

(t*, x*) satisfying (3.1). The Condition B is necessary and sufficient for the sets w, 

to be u-stable for any E E [coo, 0’) . 

5, Let u” be the strategy extremal [Z] to set wt and let Uve be the counterstra- 

tegy [8] extremal to that same set. 

Theorem 5.1. Let G = 8s (to, x0) E [ ao7 0’) and let Conditions A, B be 

fulfilled. Then, under the condition that a saddle point with respect to (u, u) exists in 

the small game [Z], the strategy u” = ue extremal to set w, solves Problem 1 by 

guaranteeing the f~fillment of (1.1). 
Theorem 5.2. Let E = es (to, X0) GZ I oo, 0’) and let Conditions A, B be 

fulfilled. Then the counterstrategy U,” = u,” extremal to set W, solves Problem 1 

by guaranteeing here the fulfillment of (1.2). 
For the control v. (s) GZZ 2 (to, x0) we form the set w (Y. (*)> of all positions 

(tt 4 w = rp (6 to, 501 q (*I), ‘I t *) fE In (vo (a>), I43, %J > 

Let V” be the second player’s strategy [8], extremal [2] to set w (v. ( -)). 
Theorem 5. 3. Strategy v” ensures the solution of Problem 3 for any r? \( Es (to, 

x0>* 
Plan of the proof. 

strategy Ye and let rkci) =: 

Let zdci) Jt] be an Euler polygonal line corresponding to the 

t, be a node of the pa~itioning Atif, and 

x* = Z*(i) [t*l E w,, bo (.)I 

w,* (I’0 (*)) = fw: (f*, 4 E w (vo (*))) 

In addition, let Ve = v J&J, II ft] be the control realizing the given Euler polygonal line, 
s be the vector w” - x*, where w” is a point of set Wts, (Ye (e)) closest to z+ in the 
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Euclidean metric and 

minp s’f (t*, z*, u, v”) = maxQ minn s’f (t*, x*, u, u) 

Then, in the program {II (Y,, (e)), [@, $!,I} we can find a control n* (e) such that 

t 

S’ 
sss f (f** %ic, u, v) q* (dr x du x dv) = i 1 minp [s’f (r*, x*, U, v)] vo (df X dv) 
t. I’ Q t. Q 

for every t E [rkti), rtl,] . H ence, with due regard to the inequalities 

S’S f (t*l G, u PI, v”) m (W > 5 maxQ minp [s’f (t*, x*, U, v)] m (dQ > 

1. t* 
t 

ss minp [S’f (t*, x*, u, v)] YO (dz X dv) 
t, Q 

we derive a local estimate analogous to the one used in [4]. From this estimate. in ana- 

logy with [4], we derive the barrier properties of strategy Fe. 
Theorem 5. 4. Let e = Es (t,, zs> E [ qj, d) and let Conditions A, B and the 

small game saddle point condition be fulfilled. Then the pair of strategies (u” = u”, 

y” = Ve) solves Problem 2. Here E = e, (to, x0) is the value of the game in pure 

strategies. 

,Problems 1-3 admit of an intuitive representation when M is a closed subset of 
8 X R”, and 0 (6, 5, n-2) = 1111: - m 11. The possible noncompactness of M is un- 
essential here since the problem reduces to an encounter-evasion problem with some 
compact subset of M. 

The author thanks N. N. Krasovskii for his constant attention to the work. 
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